717 research outputs found

    Challenging Ubiquitous Inverted Files

    Get PDF
    Stand-alone ranking systems based on highly optimized inverted file structures are generally considered ‘the’ solution for building search engines. Observing various developments in software and hardware, we argue however that IR research faces a complex engineering problem in the quest for more flexible yet efficient retrieval systems. We propose to base the development of retrieval systems on ‘the database approach’: mapping high-level declarative specifications of the retrieval process into efficient query plans. We present the Mirror DBMS as a prototype implementation of a retrieval system based on this approach

    The relationship between IR and multimedia databases

    Get PDF
    Modern extensible database systems support multimedia data through ADTs. However, because of the problems with multimedia query formulation, this support is not sufficient.\ud \ud Multimedia querying requires an iterative search process involving many different representations of the objects in the database. The support that is needed is very similar to the processes in information retrieval.\ud \ud Based on this observation, we develop the miRRor architecture for multimedia query processing. We design a layered framework based on information retrieval techniques, to provide a usable query interface to the multimedia database.\ud \ud First, we introduce a concept layer to enable reasoning over low-level concepts in the database.\ud \ud Second, we add an evidential reasoning layer as an intermediate between the user and the concept layer.\ud \ud Third, we add the functionality to process the users' relevance feedback.\ud \ud We then adapt the inference network model from text retrieval to an evidential reasoning model for multimedia query processing.\ud \ud We conclude with an outline for implementation of miRRor on top of the Monet extensible database system

    The design and implementation of an infrastructure for multimedia digital libraries

    Get PDF
    We develop an infrastructure for managing, indexing and serving multimedia content in digital libraries. This infrastructure follows the model of the Web, and thereby is distributed in nature. We discuss the design of the Librarian, the component that manages meta data about the content. The management of meta data has been separated from the media servers that manage the content itself. Also, the extraction of the meta data is largely independent of the Librarian. We introduce our extensible data model and the daemon paradigm that are the core pieces of this architecture. We evaluate our initial implementation using a relational database. We conclude with a discussion of the lessons we learned in building this system, and proposals for improving the flexibility, reliability, and performance of the syste

    The Mirror MMDBMS architecture

    Get PDF
    Handling large collections of digitized multimedia data, usually referred to as multimedia digital libraries, is a major challenge for information technology. The Mirror DBMS is a research database system that is developed to better understand the kind of data management that is required in the context of multimedia digital libraries (see also URL http://www.cs.utwente.nl/~arjen/mmdb.html). Its main features are an integrated approach to both content management and (traditional) structured data management, and the implementation of an extensible object-oriented logical data model on a binary relational physical data model. The focus of this work is aimed at design for scalability

    Moa and the multi-model architecture: a new perspective on XNF2

    Get PDF
    Advanced non-traditional application domains such as geographic information systems and digital library systems demand advanced data management support. In an effort to cope with this demand, we present the concept of a novel multi-model DBMS architecture which provides evaluation of queries on complexly structured data without sacrificing efficiency. A vital role in this architecture is played by the Moa language featuring a nested relational data model based on XNF2, in which we placed renewed interest. Furthermore, extensibility in Moa avoids optimization obstacles due to black-box treatment of ADTs. The combination of a mapping of queries on complexly structured data to an efficient physical algebra expression via a nested relational algebra, extensibility open to optimization, and the consequently better integration of domain-specific algorithms, makes that the Moa system can efficiently and effectively handle complex queries from non-traditional application domains

    Relating the new language models of information retrieval to the traditional retrieval models

    Get PDF

    On the integration of IR and databases

    Get PDF

    Database technology and the management of multimedia data in Mirror

    Get PDF
    Multimedia digital libraries require an open distributed architecture instead of a monolithic database system. In the Mirror project, we use the Monet extensible database kernel to manage different representations of multimedia objects. To maintain independence between content, meta-data, and the creation of meta-data, we allow distribution of data and operations using CORBA. This open architecture introduces new problems for data access. From an end user’s perspective, the problem is how to search the available representations to fulfill an actual information need; the conceptual gap between human perceptual processes and the meta-data is too large. From a system’s perspective, several representations of the data may semantically overlap or be irrelevant. We address these problems with an iterative query process and active user participation through relevance feedback. A retrieval model based on inference networks assists the user with query formulation. The integration of this model into the database design has two advantages. First, the user can query both the logical and the content structure of multimedia objects. Second, the use of different data models in the logical and the physical database design provides data independence and allows algebraic query optimization. We illustrate query processing with a music retrieval application
    corecore